Skip to content

Linear Algebra & System Theory

This is the lecture notes for "ELEC 5650: Networked Sensing, Estimation and Control" in the 2024-25 Spring semester, delivered by Prof. Ling Shi at HKUST. In this session, we will cover essential mathematical tools and concepts from linear algebra, matrix theory, and system theory that are fundamental to networked sensing, estimation, and control.

Eigenvalues

\(A\in\mathbb R^{n\times n}\), \(\lambda\) can be solved by

\[\text{det}(\lambda I-A)=0\]
\[ \prod_{i=1}^n\lambda_i=\text{det}(A),\quad\sum_{i=1}^n\lambda_i=\text{Tr}(A),\quad Av_i=\lambda_iv_i \]

Lemme

Let \(A\in\mathbb R^{n\times m}, B\) the non-zero eigenvalues of \(AB\) and \(BA\) are the same

Proof

\[ \underbrace{\begin{bmatrix}I&0\\B&I\end{bmatrix}}_{P}\underbrace{\begin{bmatrix}I&0\\-B&I\end{bmatrix}}_{P^{-1}}=\begin{bmatrix}I&0\\0&I\end{bmatrix}=I \]
\[ \underbrace{\begin{bmatrix}I&0\\B&I\end{bmatrix}}_{P}\begin{bmatrix}AB&A\\0&0\end{bmatrix}\underbrace{\begin{bmatrix}I&0\\-B&I\end{bmatrix}}_{P^{-1}}=\begin{bmatrix}0&A\\0&BA\end{bmatrix} \]

Corollary

\[ \text{Tr}(AB)=\text{Tr}(BA),\quad \text{Tr}(ABC)=\text{Tr}(BCA)=\text{Tr}(CAB) \]
\[ \text{Tr}(ABC)\neq\text{Tr}(ACB) \]

Cholesky Decomposition

If \(A\succeq0\), then \(\exists\) a lower triangular matrix \(L\) with real and non-negative diagonal entries such that

\[ A=LL^T=\begin{bmatrix} \ddots & & 0 \\ & \ddots & \\ \ddots & & \ddots \end{bmatrix}\begin{bmatrix} \ddots & & \ddots \\ & \ddots & \\ 0 & & \ddots \end{bmatrix} \]
\[ A=\begin{bmatrix}a_{11}&\mathbf a_{12}\\\mathbf a_{21}&A_{22}\end{bmatrix},\quad L=\begin{bmatrix}l_{11}&\mathbf 0\\\mathbf l_{21}&L_{22}\end{bmatrix} \]
\[ \begin{bmatrix}a_{11}&\mathbf a_{12}\\\mathbf a_{21}&A_{22}\end{bmatrix}=\begin{bmatrix}l_{11}&\mathbf 0\\\mathbf l_{21}&L_{22}\end{bmatrix}\begin{bmatrix}l_{11}&\mathbf l_{21}^T\\\mathbf 0&L_{22}^T\end{bmatrix}=\begin{bmatrix}l_{11}^2 & l_{11}\mathbf l_{21}^T\\l_{11}\mathbf l_{21}&\mathbf l_{21}\mathbf l_{21}^T+L_{22} L_{22}^T\end{bmatrix} \]
\[ l_{11}=\sqrt{a_{11}},\quad\mathbf l_{21}=\frac1{l_{11}}\mathbf a_{21},\quad L_{22}L_{22}^T=A_{22}-\mathbf l_{21}\mathbf l_{21}^T \]

Recursive Calculation !!!

Matrix Inversion Lemma

For matrix \(A\) and \(B\)

\[ (A+B)^{-1} = A^{-1}(I+BA^{-1})^{-1} \]

For any matrix \(A,B,C,D\) with compatible dimensions, \(A,C\) nonsingular, then

\[ \begin{aligned} (A+BCD)^{-1} &= [A(I+A^{-1}BCD)]^{-1} \\ &= (I+A^{-1}BCD)^{-1}(I+A^{-1}BCD-A^{-1}BCD)A^{-1} \\ &= [I-(I+A^{-1}BCD)^{-1}A^{-1}BCD]A^{-1} \\ &= A^{-1}-(I+A^{-1}BCD)^{-1}A^{-1}BCDA^{-1} \\ &= A^{-1}-(I+A^{-1}BCDA^{-1}A)^{-1}A^{-1}BCDA^{-1} \\ &= A^{-1}-A^{-1}BCDA^{-1}(I+AA^{-1}BCDA^{-1})^{-1} \\ &= A^{-1}-A^{-1}B[CDA^{-1}(I+BCDA^{-1})^{-1}] \\ &= A^{-1}-A^{-1}B[(I+CDA^{-1}B)^{-1}CDA^{-1}] \\ &= A^{-1}-A^{-1}B[CC^{-1}+CDA^{-1}B]^{-1}CDA^{-1} \\ &= A^{-1}-A^{-1}B[C(C^{-1}+DA^{-1}B)]^{-1}CDA^{-1} \\ &= A^{-1}-A^{-1}B(C+DA^{-1}B)^{-1}DA^{-1} \\ \end{aligned} \]

Schur Complement

\[ \begin{bmatrix} \rm A & \rm B \\ \rm C & \rm D \end{bmatrix}=\begin{bmatrix} \rm I & 0 \\ \rm CA^{-1} & \rm I \end{bmatrix}\begin{bmatrix} \rm A & 0 \\ 0 & \rm D-CA^{-1}B \end{bmatrix}\begin{bmatrix} \rm I & \rm A^{-1}B \\ 0 & \rm I \end{bmatrix} \]
\[ \begin{bmatrix} \rm A & \rm B \\ \rm C & \rm D \end{bmatrix}=\begin{bmatrix} \rm I & \rm BD^{-1} \\ 0 & \rm I \end{bmatrix}\begin{bmatrix} \rm A-BD^{-1}C & 0 \\ 0 & \rm D \end{bmatrix}\begin{bmatrix} \rm I & 0 \\ \rm D^{-1}C & \rm I \end{bmatrix} \]

Inner Product Space

\(\mathbf u,\mathbf v\in\mathcal V\), the inner product \(\langle\mathbf u,\mathbf v\rangle\) satisfies

  1. Linearity: \(\langle\alpha_1\mathbf u_1+\alpha_2\mathbf u_2,\mathbf v\rangle=\alpha_1\langle\mathbf u_1,\mathbf v\rangle+\alpha_2\langle\mathbf u_2,\mathbf v\rangle\)
  2. Conjugate Symmetry: \(\langle\mathbf u,\mathbf v\rangle=\langle\mathbf v,\mathbf u\rangle^*\), \((ยท)^*\) means transpose
  3. Positive Definiteness: \(||\mathbf u||^2=\langle\mathbf u,\mathbf u\rangle=0\Leftrightarrow\mathbf u=0\)

For two random variables \(X,Y\), define \(\langle X,Y\rangle=E[XY^T]\)

Projection Theorem

Let \(\mathcal H\in\mathbb R^{m}\) be a linear subspace of \(\mathcal S\in\mathbb R^n,(m<n)\). For some vector \(\mathbf y\in\mathcal S\), the projection of \(\mathbf y\) onto \(\mathcal H\) denoted as \(\hat{\mathbf y}_{\mathcal H}\) is a uniyque element in \(\mathcal H\), such that \(\forall\mathbf x\in\mathcal H,\langle\mathbf y-\hat{\mathbf y}_{\mathcal H},\mathbf x\rangle=0\), in other word \(\mathbf y-\hat{\mathbf y}_{\mathcal H}\perp\mathbf x\).

Gram-Schmidt Process

Let \(\set{\mathbf v_1,\mathbf v_2,...\mathbf v_n}\) be a set of linearly independent vectors in an inner product space VV. The Gram-Schmidt process constructs an orthonormal basis \(\set{\mathbf u_1,\mathbf u_2,\cdots,\mathbf u_n}\) for the subspace spanned by \(\set{\mathbf v_1,\mathbf v_2,...\mathbf v_n}\) as follows:

\[ \begin{aligned} \mathbf u_1 &= \mathbf v_1 \\ \mathbf u_2 &= \mathbf v_2 - \text{proj}_{\mathbf u_1}(\mathbf v_2) \\ &\quad\vdots \\ \mathbf u_k &= \mathbf v_k - \sum_{j=1}^{k-1}\text{proj}_{\mathbf u_j}(\mathbf v_k) \end{aligned}\qquad\mathbf e_i = \frac{\mathbf u_i}{||\mathbf u_i||} \]

Autonomous System

A linear system \(x_{k+1}=Ax_k\) is said to be stable if

\[ \forall x_0,\lim_{k\to\infty}|x_k|=0 \]

The system is stable if and only if

\[ \max_i|\lambda_i(A)|<1 \]

Controllability

A linear system \(x_{k+1}=Ax_k+Bu_k\) is said to be controllable if

\[ \forall x_0,x^*,\exists k>0,\mathbf u_k=[u_{k-1},\cdots,u_1,u_0],\quad\text{s.t.}\quad x_k=x^*. \]

\((A,B)\) is controllable is equivalent to the following

  1. \(M_c=[B,AB,A^2B,\cdots,A^{n-1}B]\) is full rank
  2. \(W_c=\sum_{k=0}^{n-1}A^kBB^T(A^T)^k\) is full rank
  3. PBH test: \(\forall\lambda\in\mathbb C,[A-\lambda I, B]\) is full rank

Assume \((A,B)\) is controllable, given \(x_0, x^*\), find \(\mathbf u_n\) such that \(x_n=x^*\)

\[ \begin{aligned} x^* = x_n &= Ax_{n-1} + Bu_{n-1} \\ &= A(Ax_{n-2} + Bu_{n-2}) + Bu_{n-1} \\ &= A^2x_{n-2} + ABu_{n-2} + Bu_{n-1} \\ &= A^nx_0 + A^{n-1}Bu_0 + \cdots + ABu_{n-2} + Bu_{n-1} \\ &= A^nx_0 + M_c\mathbf u_n \end{aligned} \]
\[ \mathbf u_n = M_c^T(M_cM_c^T)^{-1}(x^*-A^nx_0) \]

Observability

A linear system \(x_{k+1}=Ax_k, y_k=Cx_k\) is said to be observable if \(\forall x_0,\exists k>0\), such that \(x_0\) can be computed from \(\mathbf y_k=[y_0,y_1,\cdots,y_{k-1}]^T\).

\((A,C)\) is observable is equivalent to the following

  1. \(M_o=\begin{bmatrix}C\\CA\\\vdots\\CA^{n-1}\end{bmatrix}\) is full rank
  2. \(W_o=\sum_{k=0}^{n-1}(A^k)^TC^TCA^k\) is full rank
  3. PBH test: \(\forall\lambda\in\mathbb C,\begin{bmatrix}A-\lambda I\\C\end{bmatrix}\) is full rank

Assume \((A,C)\) is observable, find \(x_0\) from \(\mathbf y_k\).

\[ \begin{aligned} y_0 &= Cx_0 \\ y_1 &= Cx_1 = CAx_0 \\ &\ \ \vdots \\ y_{n-1} &= CA^{n-1}x_0 \end{aligned}\Rightarrow \mathbf y_n=\begin{bmatrix}y_0\\y_1\\\vdots\\y_{n-1}\end{bmatrix}=\begin{bmatrix}C\\CA\\\vdots\\CA^{n-1}\end{bmatrix}x_0=M_ox_0 \]
\[ x_0=(M_o^TM_o)^{-1}M_o^T\mathbf y_n \]

Controllability & Observability

\((A,C)\) is observable if and only if \((A^T,C^T)\) is controllable.

Comments