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Kalman Filter in 3 Ways

The previous video has been well received. In response to fans’ requests, we updated
the Kalman filter visualization and unscented Kalman filter.

HKUST Kalman Filter’s Variants and Particle Filter October 9, 2025 3 / 19



Recap EKF UKF Particle Filter Summary

Kalman Filter Algorithm Steps

1. Prediction

x̂k|k−1 = E[xk|z1:k−1]

Pk|k−1 = cov[xk − x̂k|k−1|z1:k−1]

2. Update

x̂k|k = E[xk|z1:k]

Pk|k = cov[xk − x̂k|k|z1:k]
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Nonlinear System Model

The Extended Kalman Filter (EKF) linearizes nonlinear system models using first-order
Taylor series expansion around the current estimate, then applies standard Kalman
Filter equations.

xk = f (xk−1,uk−1,wk−1), wk ∼N (0,Qk)

zk = h(xk,vk), vk ∼N (0,Rk)

Jacobian Matrices

Fk−1 =
∂f

∂x

∣∣∣
x̂k−1|k−1,uk−1

Hk =
∂h

∂x

∣∣∣
x̂k|k−1
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EKF Algorithm Steps

1. Prediction Step

x̂k|k−1 = f (x̂k−1|k−1,uk−1,0)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk

2. Update Step

Kk = Pk|k−1HT
k (HkPk|k−1HT

k +Rk)−1

x̂k|k = x̂k|k−1 +Kk(zk −h(x̂k|k−1,0))

Pk|k = (I −KkHk)Pk|k−1
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Pros and Cons of the EKF

Pros

• Intuitive concept, relatively low computational cost

• Performs well in many applications

Cons

• Only suitable for mildly nonlinear systems

• Linearization errors can be large for strong nonlinearities

• Requires calculation of Jacobian matrices, which can be complex

• Can diverge due to accumulation of linearization errors
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UKF - Different Approach

The Unscented Kalman Filter takes a different approach: Instead of approximating the
nonlinear function, approximate the probability distribution.
Unscented Transform Steps

1 Select Sigma Points: Choose 2n+1 points (n is state dimension)

2 Propagate Sigma Points: Pass each through nonlinear function f or h

3 Recalculate Statistics: Compute new mean and covariance

Courtesy: Zhenhui Zhang
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Sigma Point Selection

For n-dimensional state vector x̂ and covariance P:

X (0) = x̂

X (i) = x̂+
(√

(n+λ)P
)

i
, i = 1, . . . ,n

X (i) = x̂−
(√

(n+λ)P
)

i−n
, i = n+1, . . . ,2n

where λ=α2(n+κ)−n is scaling parameter.
Weights

W (0)
m = λ

n+λ
W (0)

c = λ

n+λ + (1−α2 +β)

W (i)
m = W (i)

c = 1

2(n+λ)
, i = 1, . . . ,2n
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UKF Prediction Step

Prediction Process

• Generate Sigma points X (i)
k−1 from (x̂k−1|k−1,Pk−1|k−1)

• Propagate through process model: X ∗(i)
k|k−1 = f (X (i)

k−1,uk−1)

Compute Predicted Statistics

x̂k|k−1 =
2n∑
i=0

W (i)
m X ∗(i)

k|k−1

Pk|k−1 =
2n∑
i=0

W (i)
c

(
X ∗(i)

k|k−1 − x̂k|k−1

)(
X ∗(i)

k|k−1 − x̂k|k−1

)T +Qk
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UKF Update Step

Update Process

• Generate Sigma points X (i)
k|k−1 from (x̂k|k−1,Pk|k−1)

• Propagate through observation model: Z (i)
k = h(X (i)

k|k−1)

Observation Statistics

ẑk|k−1 =
2n∑
i=0

W (i)
m Z (i)

k

Pzz =
2n∑
i=0

W (i)
c

(
Z (i)

k − ẑk|k−1

)(
Z (i)

k − ẑk|k−1

)T +Rk

Pxz =
2n∑
i=0

W (i)
c

(
X (i)

k|k−1 − x̂k|k−1

)(
Z (i)

k − ẑk|k−1

)T
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UKF Update Step (cont.)

Kalman Gain and State Update

Kk = PxzP−1
zz

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Pk|k = Pk|k−1 −KkPzzK T
k
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Pros and Cons of the UKF

Pros

• No need to calculate Jacobian matrices - simpler implementation

• Higher approximation accuracy for nonlinear systems

• Generally more stable and less prone to divergence

Cons

• Slightly higher computational cost than EKF

• Parameters (α, β, κ) need tuning
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Particles Approximation

Particle Filter uses random particles for sampling, unlike UKF’s deterministic sigma
points, enabling it to handle nonlinear, non-Gaussian systems via importance sampling
and resampling:

p(xk|z1:k) ≈
N∑

i=1
w(i)

k δ(xk −x(i)
k )

Where {x(i)
k ,w(i)

k }N
i=1 is the set of weighted particles, and δ(·) is the Dirac delta function.
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Particle Filter Algorithm Steps

1. Initialization

• Sample N particles {x(i)
0 }N

i=1 from prior p(x0)

• Initial weights w(i)
0 = 1/N

2. Recursive Process (each time step k)

• Importance Sampling: x(i)
k ∼ p(xk|x(i)

k−1)

• Weight Update: w(i)
k = w(i)

k−1 ·p(zk|x(i)
k )

• Weight Normalization: w̃(i)
k = w(i)

k∑N
j=1 w(j)

k

• Resampling: Replicate high-weight particles, eliminate low-weight ones

3. State Estimation

x̂k =
N∑

i=1
w̃(i)

k x(i)
k
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Pros and Cons of the Particle Filter

Pros

• Can handle highly nonlinear and non-Gaussian systems

• Solid theoretical foundation (Bayesian estimation + Monte Carlo)

• Suitable for complex multi-modal distributions

• Relatively intuitive implementation

Cons

• High computational cost: Requires many particles

• Particle degeneracy problem: Few particles have significant weights

• Sample impoverishment: Loss of particle diversity after resampling
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Comparison of Filter Methods

Feature Kalman Filter EKF UKF Particle Filter

Theoretical
Basis

Optimal Linear
Estimator

Local Lineariza-
tion + KF

Unscented
Transform + KF

Monte Carlo +
Bayesian

Complexity O(n3) O(n3) O(n3) O(N), N ≫ n
Applicable
Systems

Linear, Gaus-
sian

Mildly Nonlin-
ear, Gaussian

Moderate to
Highly Nonlin-
ear, Gaussian

Arbitrarily Com-
plex Nonlinear,
Non-Gaussian

Memory Low Low Low High
Key Chal-
lenge

Limited to Lin-
ear Systems

Linearization
Errors, Diver-
gence

Parameter Tun-
ing

Particle Degen-
eracy, Computa-
tional Cost
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Visualization

Kalman Filter Visualization

• Interactive demonstration available at:

• https://zhangzrjerry.github.io/html/kf.html

Key Takeaways

• KF: Linear systems

• EKF: Mild nonlinearities, computational constraints

• UKF: Strong nonlinearities, no Jacobian preference

• PF: Highly nonlinear, non-Gaussian, complex distributions
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Thank you for listening !

Zirui Zhang
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